diophantische vergelijking

Opgave - CanMO 1995 vraag 4

Zij $n$ een vast natuurlijk getal. Toon aan dat voor enkel natuurlijke getallen $k$, de diophantische vergelijking
$$x_1^3+x_2^3+\cdots+x_n^3=y^{3k+2}$$
oneindig veel oplossingen heeft in natuurlijke getallen $x_i$ en $y$.