Olympia

Nederlandstalig olympiadeproject

  • Home
    Terug naar startpagina
  • Archief
    Alle olympiadeproblemen
  • Zoeken
    Bekijk alle tags
  • Contact
    Vragen of feedback
Home › Archief › Nationale en Regionale Olympiades › Canada › CanMO › 1976 › som

som

34
Tags:
  • CanMO
  • Algebra & analyse
  • som

Opgave - CanMO 1976 vraag 2

Zij
$$n(n+1)a_{n+1}=n(n-1)a_n-(n-2)a_{n-1}$$
voor ieder natuurlijk getal $n\geq1$.
Als gegeven is dat $a_0=1,a_1=2$, vind dan
$$\frac{a_0}{a_1}+\frac{a_1}{a_2}+\frac{a_2}{a_3}+\cdots\frac{a_50} {a_51}.$$

  • login om te reageren
Home | Archief | Zoeken | Contact
© 2010 Olympia | Compliant to XHTML 1.0 Strict and CSS 2.1 | Powered by problem-solving.be

Zoeken

Random generator

Random problemen
Laat de computer een lijst van willekeurige problemen kiezen.

Niveau

  • Hoger Secundair
    • Beginner
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
    • Expert
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
    • Novice
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
  • Universitair
    • Quickie
      • Algebra (abstract)
      • Algebra (lineair)
      • Analyse (basis)
      • Analyse (geavanceerd)
      • Combinatoriek
      • Getaltheorie
      • Meetkunde
    • Contest
      • Algebra (abstract)
      • Algebra (lineair)
      • Analyse (basis)
      • Analyse (geavanceerd)
      • Combinatoriek
      • Getaltheorie
      • Meetkunde