Toon aan dat $$\frac1{15}<\frac12\cdot\frac34\cdot\frac56\cdot...\cdot\frac{97} {98}\cdot\frac{99}{100}<\frac1{10}.$$
Zij $A=\frac12\cdot\frac34\cdots\frac{99}{100}$ en $B=\frac23\cdot\frac45\cdots\frac{98}{99}$, zodat $AB=\frac{1}{100}$.
Dus is $\frac{1}{200}
Oplossing
Zij $A=\frac12\cdot\frac34\cdots\frac{99}{100}$ en $B=\frac23\cdot\frac45\cdots\frac{98}{99}$, zodat $AB=\frac{1}{100}$.
Dus is $\frac{1}{200}