P(x,y) > P(n,m)

Opgave - RMM 2010 dag 2 vraag 1

Bestaat er een veelterm $f(x_1, x_2)$ met $2$ variabelen en gehele coefficienten,
$2$ punten $A=(a_1, a_2)$ en $B=(b_1, b_2)$ in het vlak, zodat geldt dat :

(i) $A$ een roosterpunt is, ($a_1,A_2 \in \mathbb Z$)

(ii) $|a_1-b_1|+|a_2-b_2|=2010$;

(iii) $f(n_1, n_2)>f(a_1, a_2)$ $\forall$ roosterpunten $(n_1, n_2)$ in het vlak verschillend van $A$.

(iv) $f(x_1, x_2)>f(b_1, b_2)$ voor alle roosterpunten $(x_1, x_2)$ in het vlak verschillend van $B$.