Olympia

Nederlandstalig olympiadeproject

  • Home
    Terug naar startpagina
  • Archief
    Alle olympiadeproblemen
  • Zoeken
    Bekijk alle tags
  • Contact
    Vragen of feedback
Home › Archief › › 2011 › maximum vinden

maximum vinden

42
Tags:
  • Algebra & analyse

Opgave - Korea 2011 dag 2 vraag 4

Er geldt dat $a+b+c=1$ waarbij $a,b,c \in \mathbb{R}^+$.
Vind het maximum van $\frac 1 {a^2-4a+9} + \frac 1 {b^2-4b+9} + \frac 1 {c^2-4c+9}.$

  • login om te reageren
Home | Archief | Zoeken | Contact
© 2023 Olympia | Compliant to XHTML 1.0 Strict and CSS 2.1 | Powered by problem-solving.be

Zoeken

Random generator

Random problemen
Laat de computer een lijst van willekeurige problemen kiezen.

Niveau

  • Hoger Secundair
    • Beginner
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
    • Expert
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
    • Novice
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
  • Universitair
    • Quickie
      • Algebra (abstract)
      • Algebra (lineair)
      • Analyse (basis)
      • Analyse (geavanceerd)
      • Combinatoriek
      • Getaltheorie
      • Meetkunde
    • Contest
      • Algebra (abstract)
      • Algebra (lineair)
      • Analyse (basis)
      • Analyse (geavanceerd)
      • Combinatoriek
      • Getaltheorie
      • Meetkunde

Wie is online

Er zijn momenteel 0 gebruikers en 0 gasten online.