Olympia

Nederlandstalig olympiadeproject

  • Home
    Terug naar startpagina
  • Archief
    Alle olympiadeproblemen
  • Zoeken
    Bekijk alle tags
  • Contact
    Vragen of feedback
Home › Archief › Universitaire Competities › WINA › reeks 1 › 2010 › #opl. P(x)-ln(x)=0

#opl. P(x)-ln(x)=0

55
Tags:
  • reeks 1
  • Analyse (basis)

Opgave - reeks 1 2010 dag 1 vraag 3

Zij $n \in N_0$. Bepaal, in functie van $n$, het maximale aantal verschillende oplossingen
van de vergelijking $p(x) = ln(x)$, waarbij $p(x)$ een veelterm van graad $n$ is.

  • login om te reageren
Home | Archief | Zoeken | Contact
© 2010 Olympia | Compliant to XHTML 1.0 Strict and CSS 2.1 | Powered by problem-solving.be

Zoeken

Random generator

Random problemen
Laat de computer een lijst van willekeurige problemen kiezen.

Niveau

  • Hoger Secundair
    • Beginner
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
    • Expert
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
    • Novice
      • Algebra & analyse
      • Combinatoriek & algemene problem-solving
      • Getaltheorie
      • Meetkunde
  • Universitair
    • Quickie
      • Algebra (abstract)
      • Algebra (lineair)
      • Analyse (basis)
      • Analyse (geavanceerd)
      • Combinatoriek
      • Getaltheorie
      • Meetkunde
    • Contest
      • Algebra (abstract)
      • Algebra (lineair)
      • Analyse (basis)
      • Analyse (geavanceerd)
      • Combinatoriek
      • Getaltheorie
      • Meetkunde